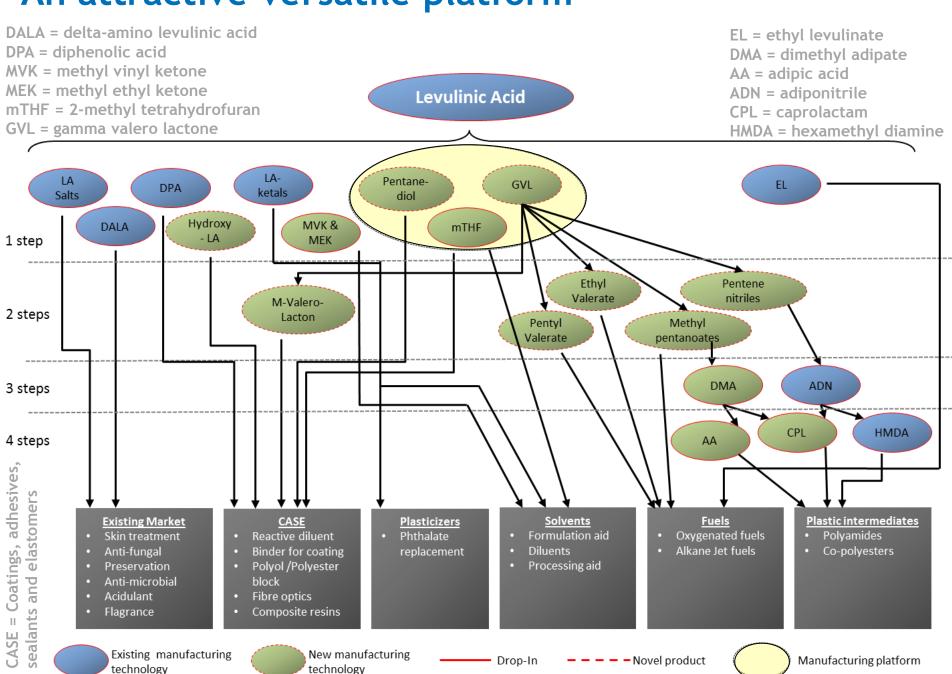


Levulinic Acid

The platform for cost competitive low carbon footprint bio-based specialty chemicals and materials

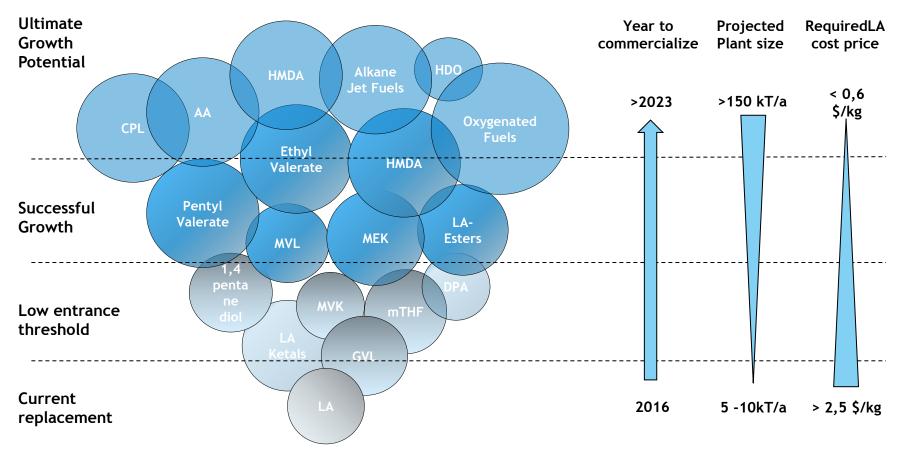
Opportunity for local commoditized ligno-cellulosic feedstock

Powered by DSM technology


Marijn Rijkers

Teaser Biobased Innovation Garden Rusthoeve, Colijnsplaat, 9 March 2016

Summary


- Levulinic Acid (LA) and gamma valerolactone (GVL) are recognized as important bio-based platform molecules. The current market price is above 3 \$/kg, serving specialty markets. The current production capacity, based on corn cobs, mainly in China, is about 5 kT/y.
- For serving commodities, the cost price of LA and GVL should significantly drop to, say, <1 \$/kg. Then markets of 1000 kT/y and more for a wide variety of bulk *drop-ins* come in reach.
- *Drop-ins* can be *molecular* (e.g. adipic acid) or *functional* (e.g. gamma valerolactone replacing another solvent).
- For reaching this cost new biobased raw materials, better technology and smart scale-up are required.
- DSM owns the LA platform technology and can offer development and implementation of the LA platform.

An attractive versatile platform

Market potential is huge

Levulinic acid cost price drives market adoption

HDO = hexanediol

DPA = diphenolic acid

MVK = methyl vinyl ketone

MEK = methyl ethyl ketone

mTHF = 2-methyl tetrahydrofuran

GVL = gamma valero lactone

HLA = hydroxy levulinic acid

AA = adipic acid

CPL = caprolactam

HMDA = hexamethyl diamine

Potential markets for the emerging LA-platform Huge opportunities for growing a very attractive business

Estimates in 2029	Market volume (kt/a)	Market value (\$ <i>bn</i>)		
Current market	6	0,01		
Plasticizers	12000	15		
Coatings, adhesives, sealants & elastomers	9000	15		
Solvents	26500	25		
Polyamide intermediates	14000	25		
Bio-fuels	1600000	1000		

Commercial Levulinic Acid Technology

Bio-based but not sustainable

- Corn cobs or bagasse → Furfural → Furfuryl alcohol (60 kT) → LA
 → GVL and other products (10 kT). Many small suppliers
 concentrated in China. Market is growing fast.
- Only C5 sugars (35% of dry weight of corn cobs and 25% of bagasse) are converted to furfural. Low efficiency. Lot of char formation.
- About 10 kg corn cobs / kg LA required
- Carbon footprint about 6-7 kg CO₂ / kg LA
- Estimated cost price 2.5\$/kg

DSM Levulinic Acid technology Economically attractive, bio-based and zero carbon footprint

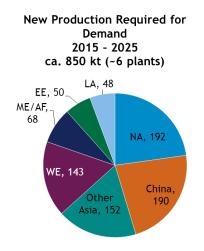
- LA feedstock: many C6 sugars containing feed stocks like ligno-cellulosic biomass or recycle wood can be used.
- C6 sugars in all feed stocks are converted with molar yield of 60% to LA and (bio-based) Formic Acid (FA). DSM tested glucose, softwood, hardwood, pulp and pulp containing process effluents, and several qualities of recycle wood.
- C5 sugars in woody biomass are converted to furfural (room for covalorization)
- Typically 5 kg wood / kg LA, co-producing 0.4 kg FA and 2.4 kg char (dry basis)
- Carbon footprint: 0 kg CO₂ / kg LA -> Carbon neutral!
- Estimated cost price @ 150 kTon/y 75% lower than current technology!

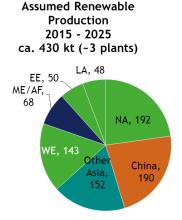
DSM Levulinic Acid feedstocks

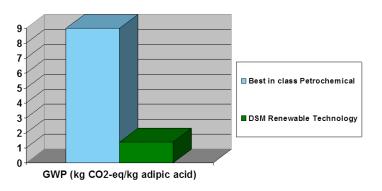
Need commodities

- Available all year through
- Constant quality, preferably dried (indicative: moist <20 wt%)
- Good price (indicative plant gate price: <70 €/ton on dry basis with cellulose content >40 wt%).
- Local wood pellets could well qualify. Note that the price of oversee wood pellets (Canada, USA) on port of Rotterdam is 130 €/ton. Logistic cost (transport to local harbor, sea freight) could add up to 50-60 €/ton.
- Wood is Good: in fact an excellent cellulose containing raw material, with no concerns regarding water scarcity, use of fertilizer and hazardous pesticides and competition of cultivated land used for food...
- ...and other ligno-cellulosic source may also serve the purpose very well, if produced sustainably.

DSM Levulinic Acid feedstocks


Pellets are good formulations


- Pellets can be produced at small scale (farm or cooperation of few farms) and stored at large scale.
- Side streams can suitably be pelletized (like local sawmills do)
- Pellets are dense (wood pellets 650 kg/m3, wood chips 190 kg/m3), so low transport and storage volume (in ARRRA the wood pellet stock is about 50 MT).
- Pellets have good flow properties.



DSM Adipic Acid technology Economically attractive, bio-based and very low carbon footprint

- Based on Levulinic acid (or gamma valerolactone)
- Estimated cost price below the commercial Adipic Acid technology (~1.3\$/kg @ 50\$/barrel oil)
- Substantial carbon footprint reduction of more than 80%
- Opportunity is the growing demand for bio-based polyamides (PA 6,6 and PA 4,6) for E&E markets and Automotive

Route to full commercial scale

Estimated timelines and costs

Activity	Ready	BM→LA (M€)*	LA→GVL (M€)**	GVL→AA (M€)***
R&D support (depends on scope)	2016	1-2	1	2
Design pilot plant (30 t/y)	2016	1-2	1	2
Build (or revamp) pilot plant	2017	5	2	5
Run pilot plant	2018	5	2	5
Design specialty plant (5-10 kT/y)	2019	2	1	2
Build specialty plant****	2020-1	30	10	20
Run specialty plant	2022	15	5	15
Design commodity plant (100+ kT/y)	2022	5	2	5
Build commodity plant****	2023-4	250	40	150
Run commodity plant	2025			

^{*} Biomass to levulinic acid

^{**} Levulinic acid to gamma-valerolactone

^{***} Gamma valerolactone to adipic acid

^{****} Brown field